EVENTS

Our events in the areas of Big Data and Research Innovation include a diverse set of topics such as Future, Strategy, Technology, Applications, and Management.

If you feel that your event or event series should be part of this event calendar, just contact us!

images/02_events/AI%20for%20good.png#joomlaImage://local-images/02_events/AI for good.png?width=800&height=300
Wednesday, October 1th, 2025 | 17:00 - 18:00 p.m.

Understanding past climate events and trends to constrain near-future climate risk

online

The global mean surface temperature record combining sea surface and near-surface air data is central to understanding climate variability and change. Understanding the past record also helps constrain uncertainty in future climate projections. In my talk, I will present a recent study (Sippel et al., 2024, Nature, doi:10.1038/s41586-024-08230-1) that refines our view of the historical record and explore its implications for near-future climate risk.

Past temperature record: The early temperature record (before ~1950) remains uncertain due to evolving methods, limited documentation, and sparse coverage. Independent reconstructions show that historical ocean temperatures were likely measured too cold by about 0.26 °C compared to land estimates despite strong agreement in other periods. This cold bias cannot be explained by natural variability; multiple lines of evidence (climate attribution, timescale analysis, coastal data, palaeoclimate records) support a substantial cold bias in early ocean records. While overall warming since the mid-19th century is unchanged, correcting the bias reduces early-20th-century warming trends, lowers global decadal variability, and brings models and observations into closer alignment.

Constraining climate risk: I will close my talk by discussing how these findings sharpen near-future temperature projections and our understanding of climate risk; and furthermore how new AI methods may provide an even clearer picture of past climate and near-future climate risk.

Institutions

  • AI for Good

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein. 

Universität Hamburg
Adeline Scharfenberg
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.